Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 111(2): e16275, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303667

ABSTRACT

PREMISE: Snow is an important environmental factor affecting plant distribution. Past changes in snowfall regimes may have controlled the demographies of snow-dependent plants. However, our knowledge of changes in the distribution and demographies of such plants is limited because of the lack of fossil records. METHODS: Population genetic and landscape genetic analyses were used to investigate the response of population dynamics of Arnica mallotopus (Asteraceae)-a plant confined to heavy-snow areas of Japan-to changes in snowfall regimes from the Last Glacial Period to the Holocene. RESULTS: The population genetic analysis suggested that the four geographic lineages diverged during the Last Glacial Period. The interaction between reduced snowfall and lower temperatures during this period likely triggered population isolation in separate refugia. Subpopulation differentiation in the northern group was lower than in the southern group. Our ecological niche model predicted that the current distribution was patchy in the southern region; that is, the populations were isolated by topologically flat and climatically unsuitable lowlands. The landscape genetic analysis suggested that areas with little snowfall acted as barriers to the Holocene expansion of species distribution and continued limiting gene flow between local populations. CONCLUSIONS: These findings indicate that postglacial population responses vary among regions and are controlled by environmental and geographic factors. Thus, changes in snowfall regime played a major role in shaping the distribution and genetic structure of the snow-dependent plant.


Subject(s)
Arnica , Genetic Variation , Japan , Snow , Population Dynamics
3.
Sci Rep ; 11(1): 18712, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548522

ABSTRACT

Species coexistence is a result of biotic interactions, environmental and historical conditions. The Janzen-Connell hypothesis assumes that conspecific negative density dependence (CNDD) is one of the local processes maintaining high species diversity by decreasing population growth rates at high densities. However, the contribution of CNDD to species richness variation across environmental gradients remains unclear. In 32 large forest plots all over the Japanese archipelago covering > 40,000 individual trees of > 300 species and based on size distributions, we analysed the strength of CNDD of individual species and its contribution to species number and diversity across altitude, mean annual temperature, mean annual precipitation and maximum snow depth gradients. The strength of CNDD was increasing towards low altitudes and high tree species number and diversity. The effect of CNDD on species number was changing across altitude, temperature and snow depth gradients and their combined effects contributed 11-18% of the overall explained variance. Our results suggest that CNDD can work as a mechanism structuring forest communities in the Japanese archipelago. Strong CNDD was observed to be connected with high species diversity under low environmental limitations where local biotic interactions are expected to be stronger than in niche-based community assemblies under high environmental filtering.

4.
Ecol Appl ; 25(5): 1433-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26485966

ABSTRACT

Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.


Subject(s)
Biomass , Forests , Models, Biological , Environmental Monitoring , Japan , Population Dynamics
5.
Glob Chang Biol ; 21(9): 3436-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25712048

ABSTRACT

Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.


Subject(s)
Biodiversity , Forests , Global Warming , Trees/physiology , Japan , Population Dynamics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...